A matheuristic for a multimodal long haul routing problem
We address a planning problem faced by logistics service providers who transport freight over long distances. Given a set of transportation requests, where the origin and the destination of each request are located far apart from each other, a logistics service provider must find feasible vehicle routes to fulfil those requests at minimum cost. When transporting freight over long distances, multimodal transportation provides a viable alternative to traditional unimodal road transportation. We introduce this new problem, which we call the multimodal long haul routing problem (MMLHRP), and present a mathematical formulation for it. Furthermore, we propose a matheuristic, using iterated local search within a column generation framework, for solving the MMLHRP. Results show that large cost savings can be achieved through multimodal transportation compared to unimodal road transportation.
Dateigröße: 4.0 kB
Dateigröße: 13.1 MB
Dateigröße: 17.0 MB
Dateigröße: 22 MB
Dateigröße: 43 MB
Dateigröße: 34 MB
Dateigröße: 34 MB
Dateigröße: 37 MB
Dateigröße: 37 MB
Dateigröße: 38 MB
Dateigröße: 38 MB
Dateigröße: 46 MB
Dateigröße: 46 MB
Dateigröße: 47 MB
Dateigröße: 47 MB
Dateigröße: 47 MB
Dateigröße: 46 MB
Dateigröße: 45 MB
Dateigröße: 47 MB
Dateigröße: 42 MB